Lightweight Communications and Marshalling for Low-Latency Interprocess Communication
نویسندگان
چکیده
We describe the Lightweight Communications and Marshalling (LCM) library for message passing and data marshalling. The primary goal of LCM is to simplify the development of low-latency message passing systems, targeted at real-time robotics applications. LCM is comprised of several components: a data type specification language, a message passing system, logging/playback tools, and real-time analysis tools. LCM provides a platformand language-independent type specification language. These specifications can be compiled into platform and language specific implementations, eliminating the need for users to implement marshalling code while guaranteeing run-time type safety. Messages can be transmitted between different processes using LCM’s message-passing system, which implements a publish/subscribe model. LCM’s implementation is notable in providing low-latency messaging and eliminating the need for a central communications “hub”. This architecture makes it easy to mix simulated, recorded, and live data sources. A number of logging, playback, and traffic inspection tools simplify common development and debugging tasks. LCM is targeted at robotics and other real-time systems where low latency is critical; its messaging model permits dropping messages in order to minimize the latency of new messages. In this paper, we explain LCM’s design, evaluate its performance, and describe its application to a number of autonomous land, underwater, and aerial robots.
منابع مشابه
A Lightweight Privacy-preserving Authenticated Key Exchange Scheme for Smart Grid Communications
Smart grid concept is introduced to modify the power grid by utilizing new information and communication technology. Smart grid needs live power consumption monitoring to provide required services and for this issue, bi-directional communication is essential. Security and privacy are the most important requirements that should be provided in the communication. Because of the complex design of s...
متن کاملA Lightweight Intrusion Detection System Based on Specifications to Improve Security in Wireless Sensor Networks
Due to the prevalence of Wireless Sensor Networks (WSNs) in the many mission-critical applications such as military areas, security has been considered as one of the essential parameters in Quality of Service (QoS), and Intrusion Detection System (IDS) is considered as a fundamental requirement for security in these networks. This paper presents a lightweight Intrusion Detection System to prote...
متن کاملDesign of a Low-Latency Router Based on Virtual Output Queuing and Bypass Channels for Wireless Network-on-Chip
Wireless network-on-chip (WiNoC) is considered as a novel approach for designing future multi-core systems. In WiNoCs, wireless routers (WRs) utilize high-bandwidth wireless links to reduce the transmission delay between the long distance nodes. When the network traffic loads increase, a large number of packets will be sent into the wired and wireless links and can...
متن کاملAn Incentive-Aware Lightweight Secure Data Sharing Scheme for D2D Communication in 5G Cellular Networks
Due to the explosion of smart devices, data traffic over cellular networks has seen an exponential rise in recent years. This increase in mobile data traffic has caused an immediate need for offloading traffic from operators. Device-to-Device(D2D) communication is a promising solution to boost the capacity of cellular networks and alleviate the heavy burden on backhaul links. However, dir...
متن کاملGSLHA: Group-based Secure Lightweight Handover Authentication Protocol for M2M Communication
Machine to machine (M2M) communication, which is also known as machine type communication (MTC), is one of the most fascinating parts of mobile communication technology and also an important practical application of the Internet of Things. The main objective of this type of communication, is handling massive heterogeneous devices with low network overheads and high security guarantees. Hence, v...
متن کامل